Stem Cell Transplantation Shows Promise for PARKINSON’S DISEASE

 

Many studies going back many years have investigated the possibility of creating neural stem cells in the lab and transplanting them to regions of the brain damaged by PARKINSON’S DISEASE.  Usually, these studies have been done using mouse models of PD and have involved heavy uses of immunosuppression.  Some studies have used cells obtained from the transplanted mouse itself, but results have rarely shown any benefit and are very difficult to duplicate.

Now, a researcher at Kyoto University’s Center for IPS Cell Research and Application in Japan has experimentally shown that cells derived from the subject’s own body produced almost no immune response when transplanted into the brains of monkeys and actually resulted in viable neural cells.  Doctors Jun Takahashi and Asuka Morizane are interested in promoting new neural pathways to restore dopaminergic cell function in the hope that this approach will help people with PARKINSON’S DISEASE.

When cells are obtained from the subject’s own body, they are called autologus.  Cells derived from other sources are called allergenic and evoke a very strong rejection response from the subject that receives them.  Autologus transplants are generally better tolerated especially in those with Parkinson’s disease.  This study used cells derived from the blood of the donor/subject and grew them into induced pluripotent stem cells (iPSC), which were then differentiated into dopaminergic neural cells.  These same cells were then transplanted back to the monkeys’ brain.  The monkeys were observed for three months and not given any immunosuppressant drugs.   No rejection response was seen and the cells became viable, functioning dopaminergic cells in their new location.

This is a radical approach that shows promise, however much more research will be necessary before it can be translated to human applications.

Credits:

“A direct Comparison of Autologus and Allergenic Transplantation of iPSC-Derived Neural Cells in the Brain of a Nonhuman Primate” Stem Cell Reports, 2013. dx.doi.org/10.1016/j.stemcr.2013.08.007

Close

Your Name (required)

Your Email (required)

Subject

Your Question